Biomedical engineers held about 19,800 jobs in 2018. The largest employers of biomedical engineers were as follows:
Medical equipment and supplies manufacturing | 19% |
Research and development in the physical, engineering, and life sciences | 16 |
Colleges, universities, and professional schools; state, local, and private | 10 |
Navigational, measuring, electromedical, and control instruments manufacturing | 9 |
Healthcare and social assistance | 9 |
Biomedical engineers work in teams with scientists, healthcare workers, or other engineers. Where and how they work depends on the project. For example, a biomedical engineer who has developed a new device designed to help a person with a disability to walk again might have to spend hours in a hospital to determine whether the device works as planned. If the engineer finds a way to improve the device, he or she might have to return to the manufacturer to help alter the manufacturing process to improve the design.
Work Schedules
Biomedical engineers usually work full time on a normal schedule. However, as with employees in almost any engineering occupation, biomedical engineers occasionally may have to work additional hours to meet the needs of patients, managers, colleagues, and clients. Some biomedical engineers work more than 40 hours per week.
Biomedical engineers typically need a bachelor’s degree in biomedical engineering or bioengineering, or in a related engineering field. Some positions may require a graduate degree.
Education
Biomedical engineering and traditional engineering programs, such as mechanical and electrical, are typically good preparation for entering biomedical engineering jobs. Students who pursue traditional engineering programs at the bachelor’s level may benefit from taking biological science courses.
Students interested in becoming biomedical engineers should take high school science courses, such as chemistry, physics, and biology. They should also take math courses, including algebra, geometry, trigonometry, and calculus. Courses in drafting or mechanical drawing and in computer programming are also useful.
Bachelor’s degree programs in biomedical engineering and bioengineering focus on engineering and biological sciences. Programs include laboratory- and classroom-based courses, in subjects such as fluid and solid mechanics, computer programming, circuit design, and biomaterials. Other required courses may include biological sciences, such as physiology.
Accredited programs also include substantial training in engineering design. Many programs include co-ops or internships, often with hospitals and medical device and pharmaceutical manufacturing companies, to provide students with practical applications as part of their study. Biomedical engineering and bioengineering programs are accredited by ABET .
Advancement
Biomedical engineers typically receive greater responsibility through experience and more education. To lead a research team, a biomedical engineer generally needs a graduate degree. Biomedical engineers who are interested in basic research may become medical scientists.
Some biomedical engineers attend medical or dental school to specialize in various techniques or topical areas, such as using electric impulses in new ways to get muscles moving again. Some earn law degrees and work as patent attorneys. Others pursue a master’s degree in business administration (MBA) and move into managerial positions. For more information, see the profiles on lawyers and architectural and engineering managers.
Biomedical engineers typically have an interest in the Building and Thinking interest areas, according to the Holland Code framework. The Building interest area indicates a focus on working with tools and machines, and making or fixing practical things. The Thinking interest area indicates a focus on researching, investigating, and increasing the understanding of natural laws.
If you are not sure whether you have a Building or Thinking interest which might fit with a career as a biomedical engineer, you can take a career test to measure your interests.
Biomedical engineers should also possess the following specific qualities:
Analytical skills. Biomedical engineers must be able to analyze the needs of patients and customers to design appropriate solutions.
Communication skills. Because biomedical engineers sometimes work with patients and frequently work with medical scientists or other engineers, they must be able to express themselves clearly.
Listening skills. Biomedical engineers often work in teams and gather input from patients, therapists, physicians, and business professionals. They must seek others’ ideas and incorporate them into the problem-solving process.
Math skills. Biomedical engineers use the principals of calculus and other advanced topics in mathematics for analysis, design, and troubleshooting in their work.
Problem-solving skills. Biomedical engineers typically deal with and solve problems in complex biological systems.
Advancement
To lead a research team, a biomedical engineer typically needs a graduate degree. Some biomedical engineers attend dental or medical school to specialize in applications at the forefront of patient care, such as using electric impulses in new ways to get muscles moving again. Some earn law degrees and work as patent attorneys.
The median annual wage for biomedical engineers was $91,410 in May 2019. The median wage is the wage at which half the workers in an occupation earned more than that amount and half earned less. The lowest 10 percent earned less than $55,280, and the highest 10 percent earned more than $148,210.
In May 2019, the median annual wages for biomedical engineers in the top industries in which they worked were as follows:
Navigational, measuring, electromedical, and control instruments manufacturing | $105,720 |
Research and development in the physical, engineering, and life sciences | 92,230 |
Medical equipment and supplies manufacturing | 89,400 |
Healthcare and social assistance | 77,520 |
Colleges, universities, and professional schools; state, local, and private | 73,300 |
Biomedical engineers usually work full time on a normal schedule. However, as with employees in almost any engineering occupation, biomedical engineers occasionally may have to work additional hours to meet the needs of patients, managers, colleagues, and clients. Some biomedical engineers work more than 40 hours per week.
Employment of biomedical engineers is projected to grow 4 percent from 2018 to 2028, about as fast as the average for all occupations.
Biomedical engineers likely will see employment growth because of increasing possibilities brought by new technologies and increasing applications to medical equipment and devices. Smartphone technology and three-dimensional printing are examples of technology being applied to biomedical advances.
As the aging baby-boom generation lives longer and stays active, the demand for biomedical devices and procedures, such as hip and knee replacements, is expected to increase. In addition, as the public continues to become more aware of medical advances, increasing numbers of people will seek biomedical solutions to their health problems from their physicians.
Biomedical engineers work with scientists, other medical researchers, and manufacturers to address a wide range of injuries and physical disabilities. Their ability to work in different activities with workers from other fields is enlarging the range of applications for biomedical engineering products and services.
For information about general engineering education and biomedical engineering career resources, visit
American Institute for Medical and Biological Engineering
American Society for Engineering Education
Biomedical Engineering Society
IEEE Engineering in Medicine and Biology Society
Technology Student Association
For information about accredited engineering programs, visit
CareerOneStop
For a career video on biomedical engineers, visit