Medical scientists conduct research aimed at improving overall human health. They often use clinical trials and other investigative methods to reach their findings.

Duties

Medical scientists typically do the following:

  • Design and conduct studies that investigate both human diseases and methods to prevent and treat them
  • Prepare and analyze medical samples and data to investigate causes and treatment of toxicity, pathogens, or chronic diseases
  • Standardize drug potency, doses, and methods to allow for the mass manufacturing and distribution of drugs and medicinal compounds
  • Create and test medical devices
  • Develop programs that improve health outcomes, in partnership with health departments, industry personnel, and physicians
  • Write research grant proposals and apply for funding from government agencies and private funding sources
  • Follow procedures to avoid contamination and maintain safety

Many medical scientists form hypotheses and develop experiments, with little supervision. They often lead teams of technicians and, sometimes, students, who perform support tasks. For example, a medical scientist working in a university laboratory may have undergraduate assistants take measurements and make observations for the scientist’s research.

Medical scientists study the causes of diseases and other health problems. For example, a medical scientist who does cancer research might put together a combination of drugs that could slow the cancer’s progress. A clinical trial may be done to test the drugs. A medical scientist may work with licensed  physicians to test the new combination on patients who are willing to participate in the study.

In a clinical trial, patients agree to help determine if a particular drug, a combination of drugs, or some other medical intervention works. Without knowing which group they are in, patients in a drug-related clinical trial receive either the trial drug or a placebo—a pill or injection that looks like the trial drug but does not actually contain the drug.

Medical scientists analyze the data from all of the patients in the clinical trial, to see how the trial drug performed. They compare the results with those obtained from the control group that took the placebo, and they analyze the attributes of the participants. After they complete their analysis, medical scientists may write about and publish their findings.

Medical scientists do research both to develop new treatments and to try to prevent health problems. For example, they may study the link between smoking and lung cancer or between diet and diabetes.

Medical scientists who work in private industry usually have to research the topics that benefit their company the most, rather than investigate their own interests. Although they may not have the pressure of writing grant proposals to get money for their research, they may have to explain their research plans to nonscientist managers or executives.

Medical scientists usually specialize in an area of research within the broad area of understanding and improving human health. Medical scientists may engage in basic and translational research that seeks to improve the understanding of, or strategies for, improving health. They may also choose to engage in clinical research that studies specific experimental treatments.

Work Environment

Medical scientists held about 130,700 jobs in 2018. The largest employers of medical scientists were as follows:

Research and development in the physical, engineering, and life sciences                            34%
Colleges, universities, and professional schools; state, local, and private 24
Hospitals; state, local, and private 18
Pharmaceutical and medicine manufacturing 6
Offices of physicians 2

Medical scientists usually work in offices and laboratories. They spend most of their time studying data and reports. Medical scientists sometimes work with dangerous biological samples and chemicals, but they take precautions that ensure a safe environment.

Work Schedules

Most medical scientists work full time.

Education and Training

Medical scientists typically have a Ph.D., usually in biology or a related life science. Some medical scientists get a medical degree instead of, or in addition to, a Ph.D.

Education

Students planning careers as medical scientists generally pursue a bachelor’s degree in biology, chemistry, or a related field. Undergraduate students benefit from taking a broad range of classes, including life sciences, physical sciences, and math. Students also typically take courses that develop communication and writing skills, because they must learn to write grants effectively and publish their research findings.

After students have completed their undergraduate studies, they typically enter Ph.D. programs. Dual-degree programs are available that pair a Ph.D. with a range of specialized medical degrees. A few degree programs that are commonly paired with Ph.D. studies are Medical Doctor (M.D.), Doctor of Dental Surgery (D.D.S.), Doctor of Dental Medicine (D.M.D.), Doctor of Osteopathic Medicine (D.O.), and advanced nursing degrees. Whereas Ph.D. studies focus on research methods, such as project design and data interpretation, students in dual-degree programs learn both the clinical skills needed to be a physician and the research skills needed to be a scientist.

Graduate programs emphasize both laboratory work and original research. These programs offer prospective medical scientists the opportunity to develop their experiments and, sometimes, to supervise undergraduates. Ph.D. programs culminate in a dissertation that the candidate presents before a committee of professors. Students may specialize in a particular field, such as gerontology, neurology, or cancer.

Those who go to medical school spend most of the first 2 years in labs and classrooms, taking courses such as anatomy, biochemistry, physiology, pharmacology, psychology, microbiology, pathology, medical ethics, and medical law. They also learn how to record medical histories, examine patients, and diagnose illnesses. They may be required to participate in residency programs, meeting the same requirements that physicians and surgeons have to fulfill.

Medical scientists often continue their education with postdoctoral work. This provides additional and more independent lab experience, including experience in specific processes and techniques, such as gene splicing. Often, that experience is transferable to other research projects.

Licenses, Certifications, and Registrations

Medical scientists primarily conduct research and typically do not need licenses or certifications. However, those who administer drugs or gene therapy or who otherwise practice medicine on patients in clinical trials or a private practice need a license to practice as a physician.

Training

Medical scientists often begin their careers in temporary postdoctoral research positions or in medical residency. During their postdoctoral appointments, they work with experienced scientists as they continue to learn about their specialties or develop a broader understanding of related areas of research. Graduates of M.D. or D.O. programs may enter a residency program in their specialty of interest. A residency usually takes place in a hospital and varies in duration, generally lasting from 3 to 7 years, depending on the specialty. Some fellowships exist that train medical practitioners in research skills. These may take place before or after residency.

Postdoctoral positions frequently offer the opportunity to publish research findings. A solid record of published research is essential to getting a permanent college or university faculty position.

Work Experience in a Related Occupation

Although it is not a requirement for entry, many medical scientists become interested in research after working as a physician or surgeon, or in another medical profession, such as dentist.

Personality and Interests

Medical scientists typically have an interest in the Building, Thinking and Creating interest areas, according to the Holland Code framework. The Building interest area indicates a focus on working with tools and machines, and making or fixing practical things. The Thinking interest area indicates a focus on researching, investigating, and increasing the understanding of natural laws. The Creating interest area indicates a focus on being original and imaginative, and working with artistic media.

If you are not sure whether you have a Building or Thinking or Creating interest which might fit with a career as a medical scientist, you can take a career test to measure your interests.

Medical scientists should also possess the following specific qualities:

Communication skills. Communication is critical, because medical scientists must be able to explain their conclusions. In addition, medical scientists write grant proposals, which are often required to continue their research.

Critical-thinking skills. Medical scientists must use their expertise to determine the best method for solving a specific research question.

Data-analysis skills. Medical scientists use statistical techniques, so that they can properly quantify and analyze health research questions.

Decision-making skills. Medical scientists must use their expertise and experience to determine what research questions to ask, how best to investigate the questions, and what data will best answer the questions.

Observation skills. Medical scientists conduct experiments that require precise observation of samples and other health data. Any mistake could lead to inconclusive or misleading results.

Pay

The median annual wage for medical scientists was $88,790 in May 2019. The median wage is the wage at which half the workers in an occupation earned more than that amount and half earned less. The lowest 10 percent earned less than $49,020, and the highest 10 percent earned more than $159,680.

In May 2019, the median annual wages for medical scientists in the top industries in which they worked were as follows:

Pharmaceutical and medicine manufacturing $111,630
Research and development in the physical, engineering, and life sciences                             95,770
Hospitals; state, local, and private 84,280
Offices of physicians 83,710
Colleges, universities, and professional schools; state, local, and private 64,140

Most medical scientists work full time.

Job Outlook

Employment of medical scientists is projected to grow 8 percent from 2018 to 2028, faster than the average for all occupations. A larger and aging population, increased rates of several chronic conditions, and a growing reliance on pharmaceuticals are all factors that are expected to increase demand for medical scientists. In addition, frontiers in medical research are expected to require the services of medical scientists.

Medical scientists will be needed for research related to treating diseases such as AIDS, Alzheimer’s disease, and cancer. Research into treatment problems, such as resistance to antibiotics, also continue to provide opportunities for medical researchers. In addition, a higher population density and the increasing frequency of international travel may facilitate the spread of existing diseases and give rise to new ones. Medical scientists will continue to be needed because they contribute to the development of treatments and medicines that improve human health.

The federal government is a major source of funding for medical research. Going forward, the level of federal funding will continue to affect competition for winning and renewing research grants.

FAQ

Where does this information come from?

The career information above is taken from the Bureau of Labor Statistics Occupational Outlook Handbook . This excellent resource for occupational data is published by the U.S. Department of Labor every two years. Truity periodically updates our site with information from the BLS database.

I would like to cite this page for a report. Who is the author?

There is no published author for this page. Please use citation guidelines for webpages without an author available. 

I think I have found an error or inaccurate information on this page. Who should I contact?

This information is taken directly from the Occupational Outlook Handbook published by the US Bureau of Labor Statistics. Truity does not editorialize the information, including changing information that our readers believe is inaccurate, because we consider the BLS to be the authority on occupational information. However, if you would like to correct a typo or other technical error, you can reach us at help@truity.com .

I am not sure if this career is right for me. How can I decide?

There are many excellent tools available that will allow you to measure your interests, profile your personality, and match these traits with appropriate careers. On this site, you can take the Career Personality Profiler assessment, the Holland Code assessment, or the Photo Career Quiz .

Latest Tweets

Get Our Newsletter

pc加拿大28查询开奖详情 28加拿大开奖数据官网 英雄联盟竞猜数据直播正规 电竞竞猜直播新版 pc28加拿大统计冷热走势APP在线看 电竞竞猜选手今日网址